Package: maicChecks (via r-universe)

August 30, 2024

Type Package Title Assessing the Numerical Feasibility for Conducting a Matching-Adjusted Indirect Comparison (MAIC) Version 0.1.2 Date 2022-01-03 Maintainer Lillian Yau <maicChecks@gmail.com> Description A collection of easy-to-implement tools for checking whether a MAIC can be conducted. An alternative way of calculating weights is also included. These methods are introduced in Glimm & Yau (2021) <arXiv:2108.01896>. **Depends** R (>= 3.5.0) Imports data.table, tidyr, ggplot2, lpSolve, quadprog License GPL (>= 3) **Encoding** UTF-8 LazyData true RoxygenNote 7.1.1 NeedsCompilation no Author Lillian Yau [aut, cre], Ekkehard Glimm [aut] Date/Publication 2022-01-04 11:00:02 UTC Repository https://l-yau.r-universe.dev RemoteUrl https://github.com/cran/maicChecks RemoteRef HEAD RemoteSha 6572c6178b2eeef387ea1b9660e253b6e7c78a11

Contents

eAD												 	 											1	2
eIPD	•						•		•		•	 	 				•			•	•			1	3
maicLP							•	•	•	•	•	 	 			•	•			•	•			1	3
maicMD	•						•	•	•	•	•	 	 	•		•	•			•	•		•	4	4

maicPCA	. 5
maicT2Test	. 6
maicWt	. 7
maxessWt	. 8
	10
	10

Index

eAD

Example AD data

Description

Example AD data

Usage

data("eAD")

Format

A data frame with 3 observations on the following 3 variables.

- scen corresponds to scenarios A, B, and C in the reference manuscript (Glimm & Yau (2021)). Scenario A is very close to IPD center (see data(ipd)) and is within the IPD convex hull; scenario B is further away from IPD center but otherwise still inside the IPD convex hull; scenario C is outside IPD convex hull.
- y1 a numeric vector
- y2 a numeric vector

References

Glimm & Yau (2021). Geometric approaches to assessing the numerical feasibility for conducting matching-adjusted indirect comparisons. arXiv 2108.01896.

Examples

print(eAD)

eIPD

Description

Example ipd data

Usage

data("eIPD")

Format

A data frame with 42 observations on the following 2 variables. The illustrative example used in the reference manuscript (Glimm & Yau (2021)).

- y1 a numeric vector
- y2 a numeric vector

References

Glimm & Yau (2021). Geometric approaches to assessing the numerical feasibility for conducting matching-adjusted indirect comparisons. arXiv 2108.01896.

Examples

head(eIPD)

maicLP

Checks if AD is within the convex hull of IPD using lp-solve

Description

Checks if AD is within the convex hull of IPD using lp-solve

Usage

maicLP(ipd, ad)

Arguments

ipd	a dataframe with n row and p coln, where n is number of subjects and p is the number of variables used in matching.
ad	a dataframe with 1 row and p coln. The matching variables should be in the same order as that in ipd. The function does not check this.

Value

1p. check 0 = AD is inside IPD, and MAIC can be conducted; 2 = otherwise

Author(s)

Lillian Yau

References

Glimm & Yau (2021). Geometric approaches to assessing the numerical feasibility for conducting matching-adjusted indirect comparisons. arXiv 2108.01896.

Examples

eAD[1,] is the scenario A in the reference paper, ## i.e. when AD is within IPD convex hull maicLP(eIPD, eAD[1,2:3]) ## eAD[3,] is the scenario C in the reference paper, ## i.e. when AD is outside IPD convex hull maicLP(eIPD, eAD[3,2:3])

maicMD	Checks if AD is within the convex hull of IPD using Mahalanobis dis-
	tance

Description

Should only be used when all matching variables are normally distributed

Usage

maicMD(ipd, ad, n.ad = Inf)

Arguments

ipd	a dataframe with n row and p coln, where n is number of subjects and p is the number of variables used in matching.
ad	a dataframe with 1 row and p coln. The matching variables should be in the same order as that in ipd. The function does not check this.
n.ad	default is NULL assuming ad is a fixed (known) quantity with infinit accuracy. In most MAIC applications ad is only the sample statistics and n.ad is known.

Details

When AD does not have the largest Mahalanobis distance, in the original scale AD can still be outside of the IPD convex hull. On the other hand, when AD does have the largest Mahalanobis distance, in the original scale, AD is for sure outside the IPD convex hull.

maicPCA

Value

Prints a message whether AD is furthest away from 0, i.e. IPD center in terms of Mahalanobis distance. Also returns ggplot object for plotting.

md.dplot	dot-plot of AD and IPD in Mahalanobis distance
md.check	0 = AD has the largest Mahalanobis distance to the IPD center; $2 =$ otherwise

Author(s)

Lillian Yau

References

Glimm & Yau (2021). Geometric approaches to assessing the numerical feasibility for conducting matching-adjusted indirect comparisons. arXiv 2108.01896.

Examples

```
## eAD[1,] is the scenario A in the reference paper,
## i.e. when AD is perfectly within IPD
md <- maicMD(eIPD, eAD[1,2:3])
md ## a dot-plot of IPD Mahalanobis distances along with AD in the same metric.
```

maicPCA

Checks whether AD is outside IPD in PC coordinates

Description

Checks whether AD is outside IPD in principal component (PC) coordinates

Usage

```
maicPCA(ipd, ad)
```

Arguments

ipd	a dataframe with n row and p coln, where n is number of subjects in IPD set and p is the number of variables used in matching.
ad	a dataframe with 1 row and p coln. The matching variables should be in the same order as that in ipd. The function does not check this.

Details

When AD is within the IPD PC ranges, AD can still be outside the IPD convex hull in the original scale. On the other hand, if AD is outside the IPD PC ranges, in the original scale AD is for sure outside the IPD convex hull.

Value

Prints a message whether AD is inside or outside IPD PC coordinates. Also returns a ggplot object to be plotted.

pc.dplot	dot-plot of AD and IPD both in IPD's PC coordinates
pca.check	0 = AD within the ranges of IPD's PC coordinates; $2 =$ otherwise

Author(s)

Lillian Yau

References

Glimm & Yau (2021). Geometric approaches to assessing the numerical feasibility for conducting matching-adjusted indirect comparisons. arXiv 2108.01896.

Examples

```
## eAD[1,] is the scenario A in the reference paper,
## i.e. when AD is perfectly within IPD
a1 <- maicPCA(eIPD, eAD[1,2:3])
a1 ## the dot plots of PC's for IPD and AD
## eAD[3,] is the scenario C in the reference paper,
## i.e. when AD is outside IPD
a3 <- maicPCA(eIPD, eAD[3,2:3])
a3 ## the dot plots of PC's for IPD and AD
```

maicT2Test

Hotelling's T-square test to check whether maic is needed

Description

Conducts Hotelling's T-square test

Usage

```
maicT2Test(ipd, ad, n.ad = Inf)
```

Arguments

ipd	a dataframe with n row and p coln, where n is number of subjects and p is the number of variables used in matching.
ad	a dataframe with 1 row and p coln. The matching variables should be in the same order as that in ipd. The function does not check this.
n.ad	default is Inf assuming ad is a fixed (known) quantity with infinit accuracy. In most MAIC applications ad is the sample statistics and n. ad is known.

6

maicWt

Details

When n.ad is not Inf, the covariance matrix is adjusted by the factor n.ad/(n.ipd + n.ad), where n.ipd is nrow(ipd), the sample size of ipd.

Value

T.sq.f	the value of the T^2 test statistic
p.val	the p-value corresponding to the test statistic. When the p-value is small, matching is necessary.

Author(s)

Lillian Yau & Ekkehard Glimm

References

Glimm & Yau (2021). Geometric approaches to assessing the numerical feasibility for conducting matching-adjusted indirect comparisons. arXiv 2108.01896.

Examples

```
## eAD[1,] is the scenario A in the reference paper,
## i.e. when AD is perfectly within IPD
maicT2Test(eIPD, eAD[1,2:3])
```

maicWt

Estimates the MAIC weights

Description

Estimates the MAIC weights for each individual in the IPD. Should only be used after it is ascertained that AD is indeed within the convex hull of IPD.

Usage

maicWt(ipd, ad, max.it = 25)

Arguments

ipd	a dataframe with n row and p coln, where n is number of subjects and p is the number of variables used in matching.
ad	a dataframe with 1 row and p coln. The matching variables should be in the same order as that in ipd. The function does not check this.
max.it	maximum iteration passed to optim(). if ad is within ipd convex hull, then the default 25 iterations of optim() should be enough.

Details

The main code are taken from Philippo (2016). It returns the following:

Value

optim.out	results of optim()
maic.wt	MAIC un-scaled weights for each subject in the IPD set
maic.wt.rs	re-scaled weights which add up to the original total sample size, i.e. nrow(ipd)
ipd.ess	effective sample size
ipd.wtsumm	weighted summary statistics of the matching variables after matching. they should be identical to the input AD when AD is within the IPD convex hull.

Author(s)

Lillian Yau

References

Phillippo DM, Ades AE, Dias S, et al. (2016). Methods for population-adjusted indirect comparisons in submissions to NICE. NICE Decision Support Unit Technical Support Document 18.

Examples

eAD[1,] is scenario A in the reference manuscript
m1 <- maicWt(eIPD, eAD[1,2:3])</pre>

maxessWt

Maximum ESS Weights

Description

Estimates an alternative set of weights which maximizes effective sample size (ESS) for a given set of variates used in the matching. Should only be used after it is ascertained that AD is indeed within the convex hull of IPD.

Usage

maxessWt(ipd, ad)

Arguments

ipd	a dataframe with n row and p coln, where n is number of subjects and p is the number of variables used in matching.
ad	a dataframe with 1 row and p coln. The matching variables should be in the
	same order as that in ipd. The function does not check this.

maxessWt

Details

The weights maximize the ESS subject to the set of baseline covariates used in the matching.

Value

maxess.wt	maximum ESS weights. Scaled to sum up to the total IPD sample size, i.e. nrow(ipd)
ipd.ess	effective sample size. It is no smaller than the ESS given by the MAIC weights.
ipd.wtsumm	weighted summary statistics of the matching variables after matching. they should be identical to the input AD when AD is within the IPD convex hull.

Author(s)

Lillian Yau

References

Glimm & Yau (2021). Geometric approaches to assessing the numerical feasibility for conducting matching-adjusted indirect comparisons. arXiv 2108.01896.

Examples

```
## eAD[1,] is scenario A in the reference manuscript
m0 <- maxessWt(eIPD, eAD[1,2:3])</pre>
```

Index

* datasets eAD, 2 eIPD, 3 eAD, 2 eIPD, 3 maicLP, 3 maicMD, 4 maicPCA, 5 maicT2Test, 6 maicWt, 7 maxessWt, 8